Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is a powerful technique for elemental compositional analysis and depth profiling of materials. However, it encounters the problem of matrix effects that hinder its application. In this work, we introduce a pioneering ToF-SIMS calibration method tailored for SixGeySnz ternary alloys. SixGe1-x and Ge1-zSnz binary alloys with known compositions are used as calibration reference samples. Through a systematic SIMS quantification study of SiGe and GeSn binary alloys, we unveil a linear correlation between secondary ion intensity ratio and composition ratio for both SiGe and GeSn binary alloys, effectively mitigating the matrix effects. Extracted relative sensitivity factor (RSF) value from SixGe1-x (0.07<0.83) and Ge1-zSnz (0.066<0.183) binary alloys are subsequently applied to those of SixGeySnz (0.011<0.113, 0.863<0.935 and 0.023<0.103) ternary alloys for elemental compositions quantification. These values are cross-checked by Atom Probe Tomography (APT) analysis, an indication of the great accuracy and reliability of as-developed ToF-SIMS calibration process. The proposed method and its reference sample selection strategy in this work provide a low-cost as well as simple-to-follow calibration route for SiGeSn composition analysis, thus driving the development of next-generation multifunctional SiGeSn-related semiconductor devices.more » « less
-
We experimentally demonstrate a low-cost transfer process of GeSn ribbons to insulating substrates for short-wave infrared (SWIR) sensing/imaging applications. By releasing the original compressive GeSn layer to nearly fully relaxed state GeSn ribbons, the room-temperature spectral response of the photodetector is further extended to 3.2 μm, which can cover the entire SWIR range. Compared with the as-grown GeSn reference photodetectors, the fabricated GeSn ribbon photodetectors have a fivefold improvement in the light-to-dark current ratio, which can improve the detectivity for high-performance photodetection. The transient performance of a GeSn ribbon photodetector is investigated with a rise time of about 40 μs, which exceeds the response time of most GeSn (Ge)-related devices. In addition, this transfer process can be applied on various substrates, making it a versatile technology that can be used for various applications ranging from optoelectronics to large-area electronics. These results provide insightful guidance for the development of low-cost and high-speed SWIR photodetectors based on Sn-containing group IV low-dimensional structures.more » « less
-
Abstract. Tropospheric ozone is a major air pollutant and greenhouse gas. It is also the primary precursor of OH, the main tropospheric oxidant. Global atmospheric chemistry models show large differences in their simulations of tropospheric ozone budgets. Here we implement the widely used GEOS-Chem atmospheric chemistry module as an alternative to CAM-chem within the Community Earth System Model version 2 (CESM2). We compare the resulting GEOS-Chem and CAM-chem simulations of tropospheric ozone and related species within CESM2 to observations from ozonesondes, surface sites, the ATom-1 aircraft campaign over the Pacific and Atlantic, and the KORUS-AQ aircraft campaign over the Seoul Metropolitan Area. We find that GEOS-Chem and CAM-chem within CESM2 have similar tropospheric ozone budgets and concentrations usually within 5 ppb but important differences in the underlying processes including (1) photolysis scheme (no aerosol effects in CAM-chem), (2) aerosol nitrate photolysis, (3) N2O5 cloud uptake, (4) tropospheric halogen chemistry, and (5) ozone deposition to the oceans. Global tropospheric OH concentrations are the same in both models, but there are large regional differences reflecting the above processes. Carbon monoxide is lower in CAM-chem (and lower than observations), at least in part because of higher OH concentrations in the Northern Hemisphere and insufficient production from isoprene oxidation in the Southern Hemisphere. CESM2 does not scavenge water-soluble gases in convective updrafts, leading to some upper-tropospheric biases. Comparison to KORUS-AQ observations shows an overestimate of ozone above 4 km altitude in both models, which at least in GEOS-Chem is due to inadequate scavenging of particulate nitrate in convective updrafts in CESM2, leading to excessive NO production from nitrate photolysis. The KORUS-AQ comparison also suggests insufficient boundary layer mixing in CESM2. This implementation and evaluation of GEOS-Chem in CESM2 contribute to the MUSICA vision of modularizing tropospheric chemistry in Earth system models.more » « less
-
null (Ed.)A loss of individuated finger movement affects critical aspects of daily activities. There is a need to develop neural-machine interface techniques that can continuously decode single finger movements. In this preliminary study, we evaluated a novel decoding method that used finger-specific motoneuron firing frequency to estimate joint kinematics and fingertip forces. High-density electromyogram (EMG) signals were obtained during which index or middle fingers produced either dynamic flexion movements or isometric flexion forces. A source separation method was used to extract motor unit (MU) firing activities from a single trial. A separate validation trial was used to only retain the MUs associated with a particular finger. The finger-specific MU firing activities were then used to estimate individual finger joint angles and isometric forces in a third trial using a regression method. Our results showed that the MU firing based approach led to smaller prediction errors for both joint angles and forces compared with the conventional EMG amplitude based method. The outcomes can help develop intuitive neural-machine interface techniques that allow continuous single-finger level control of robotic hands. In addition, the previously obtained MU separation information was applied directly to new data, and it is therefore possible to enable online extraction of MU firing activities for real-time neural-machine interactions.more » « less
-
We report the first experimental characterization of isomerically pure and pristine C120 fullertubes, [5,5] C120-D5d(1) and [10,0] C120-D5h(10766). These new molecules represent the highest aspect ratio fullertubes isolated to date; for example, the prior largest empty cage fullertube was [5,5] C100-D5d(1). This increase of 20 carbon atoms represents a gigantic leap in comparison to three decades of C60–C90 fullerene research. Moreover, the [10,0] C120-D5d(10766) fullertube has an end-cap derived from C80-Ih and is a new fullertube whose C40 end-cap has not yet been isolated experimentally. Theoretical and experimental analyses of anisotropic polarizability and UV–vis assign C120 isomer I as a [5,5] C120-D5d(1) fullertube. C120 isomer II matches a [10,0] C120-D5h(10766) fullertube. These structural assignments are further supported by Raman data showing metallic character for [5,5] C120-D5d(1) and nonmetallic character for C120-D5h(10766). STM imaging reveals a tubular structure with an aspect ratio consistent with a [5,5] C120-D5d(1) fullertube. With microgram quantities not amenable to crystallography, we demonstrate that DFT anisotropic polarizability, augmented by long-accepted experimental analyses (HPLC retention time, UV–vis, Raman, and STM) can be synergistically used (with DFT) to down select, predict, and assign C120 fullertube candidate structures. From 10 774 mathematically possible IPR C120 structures, this anisotropic polarizability paradigm is quite favorable to distinguish tubular structures from carbon soot. Identification of isomers I and II was surprisingly facile, i.e., two purified isomers for two possible structures of widely distinguishing features. These metallic and nonmetallic C120 fullertube isomers open the door to both fundamental research and application development.more » « less
-
null (Ed.)Since its first confirmed case at the end of 2019, COVID-19 has become a global pandemic in three months with more than 1.4 million confirmed cases worldwide, as of early April 2020. Quantifying the changes of pollutant emissions due to COVID-19 and associated governmental control measures is crucial to understand its impacts on economy, air pollution, and society. We used the WRF-GC model and the tropospheric NO2 column observations retrieved by the TROPOMI instrument to derive the top-down NOx emission change estimation between the three periods: P1 (January 1st to January 22nd, 2020), P2 (January 23rd, Wuhan lockdown, to February 9th, 2020), and P3 (February 10th, back-to-work day, to March 12th, 2020). We found that NOx emissions in East China averaged during P2 decreased by 50% compared to those averaged during P1. The NOx emissions averaged during P3 increased by 26% compared to those during P2. Most provinces in East China gradually regained some of their NOx emissions after February 10, the official back-to-work day, but NOx emissions in most provinces have not yet to return to their previous levels in early January. NOx emissions in Wuhan, the first epicenter of COVID-19, had no sign of emission recovering by March 12. A few provinces, such as Zhejiang and Shanxi, have recovered fast, with their averaged NOx emissions during P3 almost back to pre-lockdown levels.more » « less
-
The adsorption and decomposition of HCN on the Pd(111) and Ru(001) surfaces have been studied with reflection absorption infrared spectroscopy and density functional theory calculations. The results are compared to earlier studies of HCN adsorption on the Pt(111) and Cu(100) surfaces. In all cases the initial adsorption at low temperatures gives rise to a ν (C–H) stretch peak at ∼3300 cm −1 , which is very close to the gas phase value indicating that the triple CN bond is retained for the adsorbed molecule. When the Pd(111) surface is heated to room temperature, the HCN is converted to the aminocarbyne species, CNH 2 , which was also observed on the Pt(111) surface. DFT calculations confirm the high stability of CNH 2 on Pd(111), and suggest a bi-molecular mechanism for its formation. When HCN on Cu(100) is heated, it desorbs without reaction. In contrast, no stable intermediates are detected on Ru(001) as the surface is heated, indicating that HCN decomposes completely to atomic species.more » « less
An official website of the United States government

Full Text Available